RD-A162 837 SOHE COIVERGENCE RESULTS FO! KERNEL TYPE QUANTILE 1/1
TIHRTORS UNDER CENSOR. . (U) SOUTH CﬂROLlNﬂ UNIV
OLUNBIA DEPT OF HRTHEHHTICS AND STATI .

UNCLRSSIFIED V L LIO ET AL. NOV 85 T F/G 1271

Fimen
oric




A ARy,

Gl
B

]
P ard

I

i
I

-
=

I

[
L]
pud

1.

s

—

28
==

- 315
|:—:' =
| R
e Ve
4-9

-

rERE

l‘—»5

ll=

f2s
je2

2=

=

ll=

——
—_—
—_—
E——

NATIONAL BUREAU OF STANDARDS
WMCROCOPY RESOLUTION TEST CHART




1\17()551-'Tf{. S S 99 )
e ’ .

-

SOME CONVERGENCE RESULTS FOR KERNEL-TYPE 4
QUANTILE ESTIMATORS UNDER CENSORING#* 5 "T

Y. L. Lio and W. J. Padgett

Department of Statistics
University of South Carolina
Columbia, SC 29208

N~

[\

o0

N

(o)

| by
T

o

<

University of South Carolina
Statistics Technical Report No. 108
62G05-14

November, 1985
;"TE
\)EC‘b 1 ﬁ&ys

Ec\,lf =
v

Research supported by the U.S. Air Force Office of Scientific
Research under grant number AFOSR 84-0156 and the U.S. Army Research
Ottice under grant number MIPR ARO 139-85.

L ]

ONC FILE Copy

- - e




ABSTRACT

oo e
Based on right-censoged data from a lifetime distribucion Po, a kernel-

Y (!o—-‘r',:n

type estimator of:gig quantile f;gsfigg)oo(p), defined by

0 (p) = h-113a (R((t-p)/h )dt,>is studied. This estimator is smoother
o - -
than thé product-limit quantile function,Qn(p) = inf{t: Pn(t) 2 p}, vhere
in denotes the product-limit estimator o}'?o from the censored sample. e
Under the random censorship model and géneral conditions on hn’ K, and Fo’
asymptotic normality of Qn(p) and a simpler approximation to it, 0:(p), is

shown, and mean square convergence of Qn is proven. Also, the asymptotic

mean equivalence of 0n and 0; is shown.
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1. INTRODUCTION AND PRELIMINARIES

For any probability distribution G, denote the quantile function by
Qp) = G’l(p) = inf{x: G(x) 2 p}, 0 < p 1. From a random (uncensored)
sample from G, the sample quantile function G;l(p) = inf{x: Gn(x) 2 p),
0 <p £1, has been used to estimate Q(pi; vhere G, denotes the sample
distribution function. Csorgd (1983) gave many of the known results
concérning G;l(p). Also, Falk (i9845 studied the relative deficiency of.the
sample quantile with respect to kernel-type estimators, and Falk (1985)
obtained asymptotic normality for kernel estimators. Yang (1985) obtained
some convergence properties of kernel estimators of Q(p) and gave simulation
results comparing kernel-type estimators with other estimators. For
arbitrarily right-censored data, Sander (1975) proposed estimation of Q(p)
by the quantile function of the product-limit egtimator, and she and Cheng
(1984) derived asymptotic properties while CssrgG (1983) presented strong
approximation results for that estimator.

For randomly right-censored data, Padgett (1985) proposed a smooth non-
parametric estimator of the quantile function, defined by
Qn(p) - h;lféan(t)K((t—p)/hn)dt, vhere én denotes the product-limit quantile
function and K is an appropriate kernel function. An approximation to
Qn(p), denoted by Q;(p), which is somevhat easier to compute was also
studied. The estimator Qn’ mentioned briefly by Parzen (1979), was shown to
be strongly consistent, and Qn and Q: vere shown to be almost surely
asymptotically equivalent. Lio, Padgett, and Yu (1985) obtained an
asymptotic normality result for Q, and shoved that Qn and 0; are
asymptotically uniformly mean square equivalent under certain conditions.

In this paper, some further asymptotic normality results for 0n and

Q; will be given. Also, their asymptotic mean equivalence and the mean
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square convergence of Qn vill be shown. To define these estimators, let

éfﬁ
oIS

77
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x;,...,x: denote the true survival times of n items or individuals that are

censored on the right by a sequence ul,uz,...,un, vhich in general may be 515273
either constants or random variables. It is assumed that the x:'s are 52:52
nonnegative independent identically distributed random variables with common g;é%ég
unknown distribution function Fo and unk?ovn quantile function Q°(p) a E;. 5 E:H-A

, The observed right-censored data are denoted by the pairs (xi’Ai)’
{=1,...,n, where |
. 1if xg Sy
S it S L Sl (PP 2> U, .
Let (zi’Ai)’ i=1,...,n, denote the ordered Xi's along with their
corresponding Ai's. A popular estimator of the survival function S° = 1--Fo
is the product-limit estimator of Kaplan and Meier (1958), shown to be

]

"gelf-consistent" by EBfron (1967) and defined by

1, 0gtgz,,

P Tt A

alt) = & (o)t I 1 <t S, ke2,...pm
0, t> zn .

Denote the product-limit estimator of Po(t) by in(t) =1 - in(t), and let

sj denote the jump of én at Zj, that is,

1-P.(2,), j=1
s = Po(Zg) - Bo(By )y § = Zpeeepnel
P (2., j =n.
Note that sj-O if and only if A3 =0, < n,ii.e. vhenever Zj is a censored

observation. Also, denote s1 = pn(zi+1) = j£1 sj, i=l,...,n, with

so =0, Zo s 0, and zn+1 ] zn + ¢, for some positive constant €.

.................................
...............
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It is natural to estimate E; by the product-limit quantile function
6n(p) = E; = inf{t: in(t) 2 p}. Then the kernel-type estimator Q,(p)
studied by Padgett (1985) is written as

-1 .1 2
Q (p) = h " f5 Q ()R((t-p)/h )dt
1 Si
- hn z N ) K((t-p)/hn)dt, : (1.1)
i=1 S -
i-1
for kernel function K and bandwidth sequence {hn}. Also, the simpler,
kernel-type estimator 0: vhich is an approximation to (1.1) is defined by
* -1 8
Qn(p) = hn 15 Zisi K((Si - p)/hy). (1.2)
For the results here, the random right-censorship model will be

assumed; that is, Ul""’un constitute a random sample from a diSttibution

H (usually unknown) and are independent of xg,...,xg. The distribution
function of each Xi, inl,...,n, is then F = 1 - (1~P°)(1-H). In addition,
some or all of the following conditions will be ;ssumed for the kernel
function, bandwidth sequence, and lifetime and censoring distributions:
(h.1) hn 20asn » =
(K.1) K(x) 1is a bounded probability density function which has

finite support, i.e. K(x) = 0 for |x| > c for some ¢ > O;

(K.2) K 1is symmetric about zero;

(K.3) K satisfies a Lipschitz condition, i.e. there exists a constant

T such that for all x,y, E-L‘;__1
IR(x) - R(y)| < Tix - y[;

(F.1) Po is continuous with density function fo.

These conditions are not prohibitive and the conditions on Fo are similar

to conditions required by Cheng (1984).

2. ASYMPTOTIC NORMALITY

Lio, Padgett, and Yu (1985) shoved that under conditions (h.1l),
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(K.1)-(K.2), and (F.1), if the derivative f; is continuous at E;,

£,(8) > 0, and n*h_+ 0, then for O < p < T, vhere T < min(1,T

}
n(p;1)

vith T . = sup (t: B(FS'(t))<1}, n?[Q_(p) - €°(p)] * Z in distribution
H(F
o

as n + », vhere Z is a normally distributed random variable with mean zero

o " -
and variance c: = (1-p)? fgpll-p(u)1'2dr:(u)/f§(ag). Here Fi(u) =

P(X, <, 4;=1) is the subdistribution function of the uncensored
observations. The condition n%hn + 0 can be replaced by n’hhn + 0 by using
a slightly different proof than that of Lio, Padgett, and Yu (1985).

Define Qo(p,hn) = h;lféoo(t)x((t-p)/hn)dt for 0 < p < 1. An asymptotic
normality result for (1.1) can be obtained without the condition on the rate
of convergence of hn to 2ero by centering with Q°(p,hn) instead of Q°(p).
This type of centering seems to be required for asymptotic normality of
Q(p)-

THEOREM 2.1. Suppose (h.1), (K.1), (K.2), and (F.1) hold and f_ is
0 0
continuous at Ep vith fo(Ep) >0, Then for 0 < p <« T,
n*[Qn(p) - 0°(p,hn)] + Z in distribution as n » », vhere Z is normally

distributed with mean zero and variance cg.

The proof of Theorem 2.1 follows from the following lemma proven by

Lio, Padgett, and Yu (1985) and from Corollary 1 of Cheng (1984).

LEMMA 2.1. Under the conditions of Theorem 2.1
1
fola () - a (P Ih-'R((t-p)/h )dt{ + 0 in probability

as n + =, vhere qn(t) = n*[&n(t) - Qo(t)] denotes the product-limit quantile

process.

The asymptotic normality of (1.2) follows from Theorem 2.1 and the next




lemma.

LEMMA 2.2. 1In addition to the conditions of Theorem 2.1, suppose (K.3)
holds and B(on) <= Then as n ¥+ =,

sup_ n[Q:(p) - Q_(p)]% » 0 1in probability,
0<p<T

provided h;“JIog Tog n/n » 0. .

PROOF. For 0 { p £ T, when 8g > 0, i.e. vhen Zi is uncensored, let S: _

be an interior point of the intefval (51-1'51) with probability one so that
*
S.-p ] S
i i t-
siK [—nr - Isi-lx(—rna')dt a.s.

Let IA be the indicator function of the set A and let i* be the smallest
i < n such that Si+1-T > hnc, vhere ¢ is the constant in (K.1). If no such

i exists, then let i* = n. By (K.3), T

n[0,(p) - O (1% g 4 (@)

nh-2 { T z.s [x[si_p] x[sz-p]]x (p)I (p)}2
SRR e /il e [0,T] [S;-ch ,1]

-2 - -1 *
< 2 nh, { 151 Zisihn lsi-siII[O’.”(p)zls‘;_ch ll(p)}
n!

n
st 1 2Zdar LW

noga 117 T4
< h% 2 sup P (x)-F (x)| [ 22dP (Z,)ns,I (1)
n OSKSTF n o fal i a1 [0,1*]
[+]

vhere '1'P = sup {t: Fo(t)<1}.
. ,
From Sander (1975), for i < 1", 0 $ns; < [1-BF;LTNI™L + op(D),

.........................................

.......................
...........................................




vhere °P(1) denotes a term converging to zero in probability as n + =, By

Fn(x)-Fo(x)

the results of Foldes and Rejto (1981), sup
0<x<T

F
o
0((log log n/n)%) with probability one, and by a proof similar to that for

n R 2
Theorem 4.1 of Mauro (1985), I zidPn(Zi) > E(x° ) in probability. There-
i=l

fore, T s
nlQ(P)-0, (12T 1 (P) = Op(h;4(log Log n/m)™y,

completing the proof.

The following result for asymptotic normality of Q; is therefore

obtained. L]

THEOREM 2.2. Under the same conditions as in Lemma 2.2, for 0 < p < T,
n%[Q;(P) - Qo(p,hn)] + Z in distribution
as n > =, vhere Z is a normally distributed random variable vith mean zero

and variance ci.

3. ASTMPTOTIC MEAN EQUIVALENCE OF Q_ AND Q)

It is shown in this section that Qn and 0; are equivalent in the mean
and mean squared convergence sense. First, it is proven that 0:(9) - Qn(p)
converges to zero in the mean uniformly in p for certain choices of hn.

For any distribution function G, define TG = sup(t: G(t) < 1}.

THEOREM 3.1. Assume that (h.l1l), (K.1) and (K.3) hold, H and Fo are
continuous with z|x°| <o and T, STy <= Let ¢besucha function on {"}
o

[0,1-F(T")) that #(x) 2 %, #(x) > #0) = 0 as x » 0%, and 1 - B,(t) ¢ B

#(1 - F(t)) for t € (T",T, ), where T" is arbitrary with T" < T, . Then
4 P,

(o]
BLQN(P) - 0 (p) |1 = O(#(d(RGLOE ykyy -2y,

vhere d > 1 is some constant.




PROOF. As in the proof of Lemma 2.2, using condition (K.3), with RO

probability one

* K- S4-P S;-P ;

IOn(p) - On(p)l $hy ifl zisiIK(T‘n ) - K(—h—n ) B

e

-2, 8,2 X

<h“T & Z.s|. 3.1 -
n {a1 1 i . ( ) | :,_.._‘__'.‘

By continuity of Po and using the definitions of Si and Sy (3.1) is less iﬁ
than or equal to ' : :;;;f
L]

T L

-2 Fo - R TN g
Th_ 10 x[F (x) - F (x")[dF (x)
T ‘*
-2 Fo ‘ .
€ 2mh ° | 7 xdF (x) sup IFn(t) - Po(t)l. o
0 0<t<Ty
°

Thus, by Corollary 2(v) of Csorg8 and Horvath (1983) and Theorem 3.1 of if;‘:
Mauro (1985), the conclusion of the theorem follows. ffﬁ-
el
Under similar conditions to those of Theorem 3.1, the asymptotic mean ;kiﬁi

square equivalence of Qn and Q; can be obtained for some useful choices of

the bandwidth sequence {hn}.

THEOREM 3.2. Suppose that the conditions of Theorem 3.1 hold, replacing
EB|X°| < = by B(x°?) ¢ @. Then

B(Q,(p) - Q,(p))?] = O[¢P(d(R2E 208 Byly=b;,

PROOF. By an argument similar to the proof of Theorem 3.1, with probability

one

T
FoZ'

@y (e - 0% <4 1 %% (x) swp  [E (0 - P ()2
F
o

0<t T
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Again, the conclusion follows from Corollary 2(v) of Csorgd and Horvath

(1983) and Theorem 3.1 of Mauro (1985).

From Theorems 3.1 and 3.2, if ¢(d(log log n/2n)’h)h;2 20asn e,
then Qz(p) and Qn(p) are asympotically equivalent in the mean. If ¢ is
chosen so that ¢(x) = (x/k)1/(1+7), for some 0 < k {1 and v > 0, as in
example (1) of Csorg8 and Horvath (1983, ﬁ} 416), then (for y=0 and k=1)
the condition above becomes (log log n/n)lbh;2 + 0, which is satisfied.by

hn = Dn'b for 0 < b < % and some positive constant D, for example.

4. MEAN SQUARE COVERGENCE

The following theorem yields the mean square convergence of Qn(p) to
Qo(p) for appropriate choices of hn. Also, combining Theorem 3.2 with
Theorem 4.1 below gives conditions under which Q:(p) converges in mean

square to Qo(p).

THEOREM 4.1. Let Po be such that 0 £ Po < min (1,T -1 }. Suppose (h.1l)
)

H(Fo

and (K.1l) hold, ?o is differentiable on some neighborhood of E;, £° is
continuous at E; with fo(E;) > 0, and E(Xoa) < o, Then for 0 £ p < Py’

B(IQ_(p) - 0°(»1?) < &(n,h ), vhere g(n,h ) = o(hd) + on¥a~3/%) .
O(h;%n-5/4) + O(hnn-3/4(log n)3/4) + 0(n-5/6(log n)5/6) R

0(n-%(c1(1—p)2 + cz(l-p)hn + c3h§)) for some positive constants ¢y1 Co» and
eq.

It should be noted that an example of a bandwidth sequence (hn} which
vill give g(n,h ) 0 asn »=ish =en™> 0< §<5/2, vhere c; > 0 is

bounded by some positive constant d.

The proof of Theorem 4.1 is obtained from the following three lemmas.

...........................................
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.......
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LEMMA 4.1. Suppose (K.1) holds, Fo is differentiable on some neighborhood
. o o
l of Ep vith fo(Ep) > 0. Then
(15, 10°Cp+h u) - €°(p)] R(w)du}? = oh %).
PROOF. By the conditions on Po and fo, there exists a neighborhood A(p) of

‘ E; so that A = sup [fo(o°(t))]'1 < =, Hence, by condition (K.1), the
I teA(p)
conclusion of the lemma follows.

LEMMA 4.2. Under the conditions of Theorem 4.1,

v [BCIS_[Q_(p+h u) - Q°(p+h_u) IK(u)dul
< oh- %274 & o((1og n/n)%.
: PROOF. Let Un denote the product-limit (PL) quantile process (Csorgs,
g 1983, Bq. (8.1.18), p. 118), and for each n choose & - (log n/n)%. Define
' the events A = [ sup |U (p+h u) - (p+h u)| > € ]. By Cheng (1984), for
-cSu<e E

. large n, P[An] = 0(n‘5/2). ‘

Vrite E{Ifc[Qn(p+hnu) - Q°(p+hnu)]K(u)du] = Bl + Bz, wvhere

B, = BUSC [0°(U (p+h u) - Q°(p+h u) IK(u)du IAn}
. and

B, « B(SZ [Q°(U, (p+h u)) - Q°(p+h u) IR(u)du - IAC}.

n
Using the Holder inequality,
‘ - lb
) B, | < (BUIS,0°(U (poh_w))R(u)du]® PlA 1)
< (sup R(w) n™>/2 g(n1® Q2(eyaeny™.
a n ‘-c'n
- -5/4
Thus, by Theorem 3.1 of Mauro (1985), |E1| = 0(h “'n ).

f Now, for EZ’ using Taylor’s expansion, there exists a § between

Un(p+hnu) and p+hnu such that
18] = [BUZ [0 ph) = (Bohyn) IKCwAU(£,@°(ENITT ()|

Py n

= [BUIS 1£,€°(E) 1™ (U (p+h u) - (pohyu)

.............. o L I - . LA tor . A Tt Tt e e Lt e e Lt e L "am Tt ta ..
''''''''''''''''' ‘o T e B I . . .- "7, . CERC R S PO <, B
S PR S TR, W TS WY Sl TAI S W L STy VNP PPNy Seadead PUIT O U T TS Sl gl Wl . T S S Te.
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+ 0% (p+h_w)IR(u)du - I |
. n
- IS5, n e (bR T ),
n

vhere « denotes the uniform PL - empirical process (Csorg4, 1983,
p. 117). Por n sufficiently large, |1/f°§O°(E))| < A, vhere A is defined in

the proof of Lemma 4.1, and by Cheng’s (1984) Theorem 2, for large n,

sup [Un(p+hnu) - (p+hnu) + n'*ah(p+hnu)]
-c<ule

- 0((log n/n)3%). (4.1)
Next,
|Echn‘*;h(p+hnu)K(u)du/fo(o°(E))IAC|

n

< n~a E{IfcI;n(p+hnu)-n_$x*(p+hnu,n)lK(u)du}

+ 0[S 07" (p+h_u,m)K(uw)duI |, (4.2)
A

n
vhere K*(t,s) denotes the generalized Kiefer process (Csarga, 1983,

p. 118). By Theorem 8.1.1 of Csorgd (1983) (or Burke, Csérg8, and
Fi Horvath, 1981),

sup |a(p+h u) - n'%K*(p+hnu,n)| a.8- o(
- -cfuge

n-1/3(log n)S/Z). (4.3)

Therefore, from (4.1)-(4.3), for large n,

B, < B(AIS U (p+h u) - (p+h ) + n™Pa (p+h u) IR(u) [du

+ n7RIE [ 0% (peh_u,mR(W)dUL |

-1/3 Y

(log n)5/2)n’
3/4 ,-576

+ 0(n
£ 0((log n/n) )Y + 0(

- 0((log /n)>'%),

(log n)5/2

since EIEch%IK*(p+hnu,n)lK(u)du < =, and the proof is completed.

LEMMA 4.3. Suppose the conditions of Theorem 4.1 hold. Then

.......

..........
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B{[JZ(Q,(p+hyu) - Q°(p+h u)KR(u)du]®) :
< o™3/8 (log m>'2) + o(n a4 s
+ 0n~*(e; (1-p)% + ey(1-p)h, + eghl)). g e
PROOF. As in the proof of Lemma 4.2, write ‘:""
B(L1S(Qy(pehyu) - Q°(peh u))R(u)dul?) = By + E,, R
vhere ' 7 o
Ey = B{[I%(Q (p+hyu) - (pebu) KW’ ) B
n Nos
and T
B, = B([°.(Q_(p+h u) - Q°(p+hnu))K(u)du]ZIAn}. ”
Now, . o
g, < BCLIC Q2 (peh wIRCAW) 1T, )
n
< BLUS Q2 (eh wR(WAW?] - paN®
< (BLIS (0 (p+h w)R(u)du]}# 0374 | sk
< tsup R 1* (holrfed(tyary® nm3/4 S
u '.-_:.:_:
<oogt o
by Holder’s inequality and Mauro’s (1985) Theorem 3.1.
Next, using the Taylor expansion as in the proof of Lemma 4.2,
[By] < [BOLIC(£,00°(0)) 7 (U (p+h ) - (peh ) o
+ 0% (p+h_u))R(u)du]?} |
+ [BOLIS,(£,0°(0)) I *a_(peb_uiR(u)du]?) | i
+ 2[B(IE (£,€0°(0)) 7 U (p+h ) - (peh_u) .
+ 078 (p+h_u) |R(u)du
x Ifc(fo(Oo(ﬁ)))-ln-,han(p-o-hnu)l((u)du} | \'
w By + By, 4 E,;-
Now, as in the proof of Lemma 4.2, .{_“-‘
B4, ] $ [0(1og n/n)¥%))2 < 0((10g n/n)¥'?). 2

.................................................
..............................................
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Also, e
By, € RIS (£, (00(8)) o (peh_w) =
- 07" (p+h_u,n))R(wdu}?} |
+ 0 R [ECS (£, 0%(8))) I (peh_w)R(u)du)? |
+ n%2|E(1C (£ () a (peh w)
- 07" (p+h_u,n) IR (u)du -
%I (£,(0°(8)) 07" (p+h u,n)R(u)du} |
13308 ny%'%)2
+ Azn"%E{Ifcn'lx*z(p+hnu,n)K2(u)du}
“13(10g n)*/%)BJC n7#[K" (p+h_u,n) [R(u)du. (4.5)

< n'%IO(n

+ 2A2n"%0(n
Since n'%K*(t,n) is a Gaussian process in t, the last expectation in (4.5)
is finite, and by Fubini’s theorem and section 8.2 of Csorg8 (1983), for n
sufficiently large,

B(J% 07K 2 (p+h,u, n)K(u)du}

-~

2 p+hnu f
- Ifcll-(p+hnu)] [ IO dx K(u)du
(1-x)%(1-B(Q°(x)))
Po 2K
s o dx [45,(1-p) R(u)du
(1-x)4(1-8(0°(x)))

+2(1-ph, 1€ uK(u)dush [ u¥R(u)du]. (4.6)
Therefore, from (4.6) and condition (K.1), (4.5) yieids for appropriate

constants Cys Cyy and cq

By, 1 S 0(n™7/2(log m)>/%) & n7*[e,(1-p)? + ey(1-p)h, + eghll. :
Similarly, since IBIfc(fo(Qo(E)))—ln_*ah(p+hnu)x(u)du| < =, .
[By3 [ ¢ 0(n->6(log m>'2). ;e

Therefore, combining these results for 83,
- (-] 2
B{IZ,(Q (p+h u) - Q°(p+h u))R(u)du]®)

% _-5/4 372

< 0(h~#a=3/%) 4 o((log n/n) -3/2

-7/2 )

(log n)

) + 0(n (log n)

-5/6 5/2

+ O(n'%[cl(l—p)2 + cz(l-p)hn + c3hﬁ]) + 0(n )
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- oh=*n™3%) 4 0(n™38(10g n)>'?) e
* O(n“[c (l-p)2 + ¢, (1-p)h_+ ¢ hzl), "‘a
1 2 n 3"n ['v
completing the proof. &ﬁﬂg
(=, :\N

‘

The proof of Theorem 4.1 is then obtained from Lemmas 4.1-4.3 by
vriting, for sufficiently large n, : -
B(la(p) - O°(m1?)
= B([S°,(Q_(p+h_u) - Q°(p+h_u))R(u)dul?}

+ [IC (@°(p+h u) - Q%(p))R(u)du]? 5???
+ foc[0°(P+hnu) - 0°(p) IKR(u)du &f%
x B{IC [Q, (p+h u) - Q°(p+h u)IR(u)du}. =
It should be noted that the conditions of Theorem 4.1, as well as those - b
of the other theorems in this paper, are not restrictive and are similar to ;;;}5

conditions for results for right-censored data obtained by previous authors.
See Chapter 8 of Csorgd (1983) for various references and Cheng (1984),

. for example.
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